An Advanced Current Control Strategy for Distorted Grid Connected Distributed Generation System

ONTERU SUMATHI¹, SHAIK HAMEED²

¹PG Scholar, Dept of EEE, Quba College of Engineering & Technology, Nellore, AP, India.
²Associate Professor, Dept of EEE, Quba College of Engineering & Technology, Nellore, AP, India.

Abstract: This paper introduces an advanced current control strategy for grid-connected operations of distributed generation (DG), which supports the DG to transfer a sinusoidal current into the utility grid despite the distorted grid voltage and non-linear local load conditions. The proposed current controller is designed in the synchronous reference frame and composed of a proportional–integral (PI) controller and a repetitive controller (RC). An RC serves as a bank of resonant controllers, which can compensate a large number of harmonic components with a simple delay function. Hence, the control strategy can be greatly simplified. In addition, the proposed control method does not require the local load current measurement or harmonic analysis of the grid voltage. Therefore, the proposed control method can be easily adopted into the traditional DG control system without installation of extra hardware. Despite the reduced number of sensors, the grid current quality is significantly improved compared with the traditional methods with the PI controller. The operation principle of the proposed control method is analyzed in detail, and its effectiveness is validated through simulated and experimental results.

Keywords: Distributed Generation (DG), Grid-Connected Inverter, Harmonic Compensation, Repetitive Control, Nonlinear Load.

I. INTRODUCTION

The Use of renewable energy sources, such as wind turbines, photovoltaic, and fuel cells, has greatly increased in recent decades to address concerns about the global energy crisis, depletion of fossil fuels, and environmental pollution problems. As a result, a large number of renewable energy sources have been integrated in power distribution systems in the form of distributed generation (DG) [1]. DG systems can offer many advantages over traditional power generation, such as small size, low cost, high efficiency, and clean electric power generation. A DG system is typically operated in a grid-connected mode where the maximum available power is extracted from energy sources and transferred to the utility grid [2]–[8]. In addition, to exploit full advantages of a DG system, the DG can be also equipped and operated with local loads, where the DG supplies power to the local load and transfers surplus power to the grid [9]–[14]. In both configurations, i.e., with and without the local load, the prime objective of the DG system is to transfer a high-quality current (grid current) into the utility grid with the limited total harmonic distortion (THD) of the grid current at 5%, as recommended in the IEEE 1547 standards [15]. To produce a high-quality grid current, various current control strategies have been introduced, such as hysteresis, predictive, proportional–integral (PI), and proportional–resonant (PR) controllers. Hysteresis control is simple and offers rapid responses; however, it regularly produces high and variable switching frequencies, which results in high current ripples and difficulties in the output filter design [3]. Meanwhile, predictive control is an ideal solution for current regulation of the grid-connected DG. However, despite its rapid response, the control performance of the predictive controller strongly relies on system parameters [4].

Therefore, system uncertainty is an important issue affecting the grid current quality. The PI controller in the synchronously rotating (d–q) reference frame and the PR controller in the stationary (a–β) reference frame are effective solutions that are commonly adopted to achieve a high-quality grid current [2], [5], [10], [11], [16]. However, these current controllers are only effective when the grid voltage is ideally balanced and sinusoidal. Unfortunately, due to the popular use of nonlinear loads such as diode rectifiers and adjustable-speed ac motor drives in power systems, the grid voltage at the point of common coupling (PCC) is typically not pure sinusoidal, but instead can be unbalanced or distorted. These abnormal grid voltage conditions can strongly deteriorate the performance of the regulating grid current [17]. Along with grid voltage distortion, the presence of nonlinear loads in the local load of the DG also causes a negative impact on the grid current quality [13]. To address this problem, the local load current measurement and a load current feedfor-ward loop are regularly adopted [13], [14]. Although these compensation methods are effective in improving grid current quality, the requirement of additional hardware, specifically the current sensor for measuring the local load current, is the main drawback of this control method.
Furthermore, most afore-mentioned studies consider and separately tackle the impact of distorted grid voltage or the nonlinear local load; none of them simultaneously takes into account those issues. To overcome the limitations of aforementioned studies, this paper proposes an advanced current control strategy for the grid-connected DG, which makes the grid current sinusoidal by simultaneously eliminating the effect of nonlinear local load and grid voltage distortions. First, the influence of the grid voltage distortions and nonlinear local load on the grid current is determined. Then, an advanced control strategy is introduced to address those issues. The proposed current controller is designed in the d–q reference frame and is composed of a PI and an RC. One single RC can compensate a large number of harmonic components with a simple delay function. Hence, the control strategy can be greatly simplified. Another advantage of the proposed control method is that it does not demand the local load current measurement and the harmonic analysis of the grid voltage. Therefore, the proposed control method can be easily adopted into the traditional DG control system without the installation of extra hardware. Despite the reduced number of sensors, the performance of the proposed grid current controller is significantly improved compared with that of the traditional PI current controller. In addition, with the combination of the PI and RC, the dynamic response of the proposed current controller is also greatly enhanced compared with that of the traditional RC. The feasibility of the proposed control strategy is completely verified by simulation and experimental results.

II. SYSTEM CONFIGURATION AND ANALYSIS OF GRID VOLTAGE DISTORTION AND NONLINEAR LOCAL LOAD

Fig 1 shows the system configuration of a three-phase DG operating in grid-connected mode. The system consists of a dc power source, a voltage-source inverter (VSI), an output LC filter, local loads, and the utility grid. The purpose of the DG system is to supply power to its local load and to transfer surplus power to the utility grid at the PCC. To guarantee high-quality power, the current that the DG transfers to grid (i_g) should be balanced, sinusoidal, and have a low THD value. However, because of the distorted grid voltage and nonlinear local loads that typically exist in the power system, it is not easy to satisfy these requirements.

A. Effect of Grid Voltage Distortion

To assess the impact of grid voltage distortion on the grid current performance of the DG, a model of the grid-connected DG system is developed, as shown in Fig. 2. In this model, the VSI of the DG is simplified as voltage source (v_i). The inverter transfers a grid current (i_g) to the utility grid (v_g). For simplification purpose, it is assumed that the local load is not connected into the system. In Fig. 2(a), the voltage equation of the system is given as

\[v_i - v_g - L_f \frac{di_g}{dt} - R_f i_g = 0 \]

(1)

where R_f and L_f are the equivalent resistance and inductance of the inductor L_f, respectively.

If both the inverter voltage and the grid voltage are composed of the fundamental and harmonic components as (2), the voltage equation of (1) can be decomposed into (3) and (4), and the system model shown in Fig. 2(a) can be expressed as Fig. 2(b) and (c), respectively. That is

\[v_i = v_{i1} + \sum_{h \neq 1} v_{ih} \]

(2)

\[v_g = v_{g1} + \sum_{h \neq 1} v_{gh} \]

(3)

Fig 2. Model of grid-connected DG system under distorted grid voltage condition. (a) General condition; (b) at the fundamental frequency; and (c) at harmonic frequencies.
From (4), due to the existence of the harmonic components \(\sum_{h \neq 1} v_{gh} \) in the grid voltage, the harmonic currents \(\sum_{h \neq 1} i_{gh} \) are induced into the grid current if the DG cannot generate harmonic voltages \(\sum_{h \neq 1} v_{ih} \) that are exactly the same as \(\sum_{h \neq 1} v_{gh} \). As a result, the distorted grid voltage at the PCC causes non-sinusoidal grid current \(i_g \) if the current controller cannot handle harmonic grid voltage \(\sum_{h \neq 1} v_{gh} \).

B. Effect of Nonlinear Local Load

Fig. 3 shows the model of a grid-connected DG system with a local load, whereby the local load is represented as a current source \(i_L \), and the DG is represented as a controlled current source \(i_{DG} \). According to Fig. 3, the relationship of DG current \(i_{DG} \), load current \(i_L \), and grid current \(i_g \) is described as

\[
i_{DG} = i_L + i_g
\]

(5)

Fig. 3. Model of grid-connected DG system with nonlinear local load.

Assuming that the local load is nonlinear, e.g., a three-phase diode rectifier, the load current is composed of the fundamental and harmonic components as

\[
i_L = i_{L1} + \sum_{h \neq 1} i_{Lh}
\]

(6)

where \(i_{L1} \) and \(i_{Lh} \) are the fundamental and harmonic components of the load current, respectively. Substituting (6) into (5), we have

\[
i_g = i_{DG} - \left(i_{L1} + \sum_{h \neq 1} i_{Lh} \right)
\]

(7)

From (7), it is obvious that, in order to transfer sinusoidal grid current \(i_g \) into the grid, DG current \(i_{DG} \) should include the harmonic components that can compensate the load current harmonics \(\sum_{h \neq 1} i_{Lh} \). Therefore, it is important to design an effective and low-cost current controller that can generate the specific harmonic components to compensate the load current harmonics. Generally, traditional current controllers, such as the PI or PR controllers, cannot realize this demand because they lack the capability to regulate harmonic components.

III. PROPOSED CONTROL SCHEME

To enhance grid current quality, an advanced current control strategy, as shown in Fig. 4, is introduced. Although there are several approaches to avoid the grid voltage sensors and a phase-locked loop (PLL) [19], Fig. 4 contains the grid voltage sensor and a PLL for simple and effective implementing of the proposed algorithm, which is developed in the d–q reference frame. The proposed control scheme is composed of three main parts: the PLL, the current reference generation scheme, and the current controller. The operation of the PLL under distorted grid voltage has been investigated, in detail, in [20]; therefore, it will not be addressed in this paper. As shown in Fig. 4, the control strategy operates without the local load current measurement and harmonic voltage analysis on the grid voltage. Therefore, it can be developed without requiring additional hardware. Moreover, it can simultaneously address the effect of nonlinear local load and distorted grid voltage on the grid current quality.

Fig. 4. Overall block diagram of the proposed control strategy.

Fig. 5. Block diagram of the current controller.

A. Current Reference Generation

As shown in Fig. 4, the current references for the current controller can be generated in the d–q reference frame based on the desired power and grid voltage as follows [14]:

\[
i_{g_d}^* = \frac{2}{3} P^* \quad i_{g_q}^* = \frac{2}{3} Q^*
\]

(8)

where \(P^* \) and \(Q^* \) are the reference active and reactive power, respectively; \(v_{gd} \) represents the instantaneous grid voltage in the d–q frame; and \(i_{g_d}^* \) and \(i_{g_q}^* \) denote the direct...
and quadrature components of the grid current, respectively. Under ideal conditions, the magnitude of \(v_{gd} \) has a constant value in the d–q reference frame because the grid voltage is pure sinusoidal. However, if the grid voltage is distorted, the magnitude of \(v_{gd} \) no longer can be a constant value. As a consequence, reference current \(i_{gd}^* \) and \(i_{gq}^* \) cannot be constant in (8). To overcome this problem, a low-pass filter (LPF) is used to obtain the average value of \(v_{gd} \), and the d–q reference currents are modified as follows:

\[
i_{gd}^* = \frac{2}{3} \frac{P^*}{V_{g0}} \quad i_{gq}^* = \frac{2}{3} Q^* V_{g0}
\]

(9)

where \(V_{g0} \) is the average value of \(v_{gd} \), which is obtained through the LPF in Fig. 4.

B. Current Controller

An advanced current controller is proposed by using a PI and an RC in the d–q reference frame. The block diagram of the current controller is shown in Fig. 5. The open-loop transfer function of the PI and RC in a discrete-time domain is given respectively in

\[
G_{PI}(z) = K_p + \frac{K_d}{z - 1}
\]

(10)

\[
G_{RC}(z) = \frac{K_p k z^{-N/6}}{1 - Q(z)z^{-N/6}}
\]

(11)

In order to overcome the grid frequency variations, an adaptive control scheme was introduced. Nevertheless, the current controller needs some additional components, such as filters and controllers, to implement the frequency adaptive controllers. In this paper, the proposed current controller is basically designed to compensate both the current harmonic and the grid frequency variation, simultaneously. When the grid frequency varies, the grid frequency \((f_s) \) is quickly detected by the PLL, and the frequency variation is compensated directly by adjusting the number of delay samples, i.e., \(N/6 = f_{\text{sample}}/(6f_s) \), inside the RC in Fig. 5. Fig. 7 shows the Bode diagram of the PI-RC with different values of \(N/6 \). As shown in Fig. 7, by adjusting \(N/6 \), the peak gain of the RC can be moved to adapt the grid frequency variations.

TABLE I: System Parameters

![Bode diagram of the proposed PI-RC current controller with different values of N/6.](image)

Fig. 7. Bode diagram of the proposed PI-RC current controller with different values of N/6.

![Bode diagram of the proposed PI-RC current controller.](image)

Fig. 6. Bode diagram of the proposed PI-RC current controller.

Fig. 6 presents the Bode diagram of the proposed PI-RC current controller. In Fig. 6, the fundamental frequency is 50 Hz. It is shown in Fig. 6 that the proposed current controller designed in the d–q reference frame provides a high peak gain at the 6th \((n = 1, 2, 3 \ldots) \) harmonic orders, i.e., 300 Hz, 600 Hz, 900 Hz, etc. Therefore, the proposed current controller can sufficiently compensate \((6n \pm 1) \)th \((n = 1, 2, 3 \ldots) \) harmonics caused by distorted grid voltage and/or a nonlinear local load, and it can guarantee a good quality of the grid current despite the distorted grid voltage and nonlinear local load. In Fig. 6, the current controller is designed at a fixed grid frequency of 50 Hz. However, in practical applications, grid frequency can have small variations around the nominal value.
IV. SIMULATION RESULTS

A simulation model of the DG system is built by PSIM simulation software to verify the effectiveness of the proposed control method as shown in Fig.8. The system parameters are given in Table I. In the simulation, three cases are taken into account.

- Case I: The grid voltage is sinusoidal and the linear local load is used.
- Case II: The grid voltage is sinusoidal and the nonlinear local load is used.
- Case III: The grid voltage is distorted and the nonlinear local load is used.

In Cases I and II, the grid voltage is assumed as a pure sinusoidal waveform. In Case III, the distorted grid voltage is supplied with the harmonic components: 3.5% 5th harmonic, 3% 7th harmonic, 1% 11th harmonic, and 1% 13th harmonic. The THD of grid voltage is about 4.82%. This grid voltage condition complies with the IEEE 519-1992 harmonic restriction standards, where the THD of grid voltage is less than 5%. In all test cases, the reference grid current is set at $i^*_{gd} = 10$ A and $i^*_{gq} = 0$, and the conventional PI current controller and the proposed current controller are investigated to compare their control performances. Fig. 9 depicts the steady-state performance of the grid connected DG by using the conventional PI current controller. The proposed control strategy can provide a good quality grid current, i.e., sinusoidal grid currents, despite the distorted grid voltage and nonlinear local load conditions. Therefore, fuzzy proposed current controller, the distorted grid voltage and nonlinear load current no longer affect the grid current quality. Moreover, the proposed control method can bring the THD of the grid current to less than 5% in all cases and results as shown in Figs.8 to 20.

Fig.8. Simulink block diagram for grid connected system.

Fig.9. Simulation results with the PI-RC current controller for case I.

Fig.10. Simulation results with the PI-RC current controller for case II.
A. Simulation Results With Fuzzy
For following cases, the simulation results has been analyzed below for fuzzy controller.

B. THD Analysis with PI
For following cases, the THD (Total Harmonic Distortion) analysis for PI controller is detailed.
An Advanced Current Control Strategy for Distorted Grid Connected Distributed Generation System

Fig. 16. THD analysis for PI controller for case II.

Fig. 17. THD analysis for PI controller for case III.

Fig. 18. THD analysis for Fuzzy controller for case I.

Fig. 19. THD analysis for Fuzzy controller for case II.

Fig. 20. THD analysis for Fuzzy controller for case III.

TABLE II: Summary of THD Values of Grid Current With PI And Proposed Current Controllers

V. CONCLUSION

In this proposed work an advanced current control strategy for the grid-connected DG to simultaneously eliminate the effect of grid voltage distortion and nonlinear local load on the grid current. The simulation and experimental results established that the DG with the proposed current controller can sufficiently transfer a sinusoidal current to the utility grid, despite the nonlinear local load and distorted grid voltage conditions. The proposed current control scheme can be implemented without the local load current sensor and harmonic analysis of the grid voltage; therefore, it can be easily integrated in the conventional control scheme without installation of extra hardware. Despite the reduced number of current sensors, the quality of the grid current is significantly improved: the THD value of the grid current is decreased considerably compared with that achieved by using the conventional PI current controller. In addition, the proposed current controller also maintained a good quality of grid current under grid frequency variations. Moreover, the dynamic response of the grid current controller was also greatly enhanced compared with that of the traditional RC, due to the PI and RC combination and the reduced RC delay time.

VI. REFERENCES

