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Abstract: We present a novel deep learning architecture for 

fusing static multi-exposure images. Current multi-exposure 

fusion (MEF) approaches use hand-crafted features to fuse 

input sequence. However, the weak hand-crafted 

representations are not robust to varying input conditions. 

Moreover, they perform poorly for extreme exposure image 

pairs. Thus, it is highly desirable to have a method that is 

robust to varying input conditions and capable of handling 

extreme exposure without artifacts. Deep representations have 

known to be robust to input conditions and have shown 

phenomenal performance in a supervised setting. However, the 

stumbling block in using deep learning for MEF was the lack 

of sufficient training data and an oracle to provide the ground-

truth for supervision. To address the above issues, we have 

gathered a large dataset of multi-exposure image stacks for 

training and to circumvent the need for ground truth images, 

we propose an unsupervised deep learning framework for MEF 

utilizing a no-reference quality metric as loss function. The 

proposed approach uses a novel CNN architecture trained to 

learn the fusion operation without reference ground truth 

image. The model fuses a set of common low level features 

extracted from each image to generate artifact-free perceptually 

pleasing results. We perform extensive quantitative and 

qualitative evaluation and show that the proposed technique 

outperforms existing state-ofthe-art approaches for a variety of 

natural images. 

Keywords: Multi-Exposure Image Fusion, Highdynamic-

Range Imaging, Weighted Mean, Sparse Representation. 

I. INTRODUCTION 

   When we take photos of natural scenes that include very dark 

and very bright regions, their digital images often lose details 

of these regions. In general, commonly used digital cameras 

have narrower ranges of luminance than natural scenes [1, 2]. 

We cannot obtain details of regions whose luminance is outside 

camera ranges. These regions are commonly called saturation 

regions. To clearly represent scenes without saturation regions, 

multi-exposure image fusion has been proposed [3–22]. It fuses 

some images into one desired image. The input images are 

obtained by taking photos of the same scene with different 

exposure times, and the locations of their saturation regions are 

different. Hence, the fused image fully represents the scene 

without saturation regions. Methods for multi-exposure image 

fusion are mainly classified into two types: weighted mean 

and gradient cascade. The former type has been actively 

studied and includes the greatest number of methods [3–19]. 

These methods fuse images by pixel-wise weighted mean. 

Various procedures forthe weight calculation have been 

proposed. Recently, some methods have aimed to prevent 

visual artifacts, such as motion blurs and ghosts [12–19]. The 

artifacts are caused by movement of objects, and recent 

methods try to align objects in the same locations. 

Consequently, these methods reduce artifacts and produce 

natural images. In the gradient cascade type, few methods 

have been proposed [20, 21]. These methods choose the 

maximum gradients of input images at each pixel, and the 

resultant gradient field is defined as gradients of the fused 

image. Finally, the gradients are transformed to the spatial 

domain, and the result is the fused image. They produce fine 

edges and textures in fused images. Each of the two types has 

problems with fused images.  

        Due to the mean procedure, weighted mean methods 

produce blurred images. In particular, edges and textures of 

their resultant fused images are blurred. With the other type, 

errors caused by noise and saturation are spread all over the 

image via the transformation from the gradient domain to the 

spatial domain, and the spreading amplifies the errors. 

Consequently, unnatural regions occur in fused images. 

Recently, sparse representation is widely used as fundamental 

technique in image processing [23–25], because it can 

approximate images to have sharp edges and textures without 

slight variations such as noises. Several image applications 

based on sparse representation have been proposed, and 

achieve excellent results [23–25]. In the multi-exposure 

image fusion, a method based on sparse representation has 

also been proposed [22]. The method divides mean values 

and residual components of each input image by patch unit, 

averages the values, and fuses the components based on 

sparse representation to produce sharp fused components. 

Unfortunately, since the averaging procedure is poor and the 

fusionis affected by saturation regions, fused images are 

visually blurred and artifacts often occur. To overcome the 

problems of previous methods, we propose a hybrid method 

for multi-exposure image fusion based on weighted mean and 

sparse representation.  



SAI SANDEEP YANDAMURI, AKULA PRAVIN 

International Journal of Innovative Technologies 

Volume.06, Issue No.01, January-June, 2018, Pages: 0236-0238 

      The proposed method produces averages and details of 

fused images by using weighted mean and sparse 

representation, respectively. The details mean edges, local 

contrasts, and textures. Due to the weighted mean method, the 

resultant average imagesare visually natural. For fusion of 

detail components, we use the proposed selection method 

(which includes sparse representation) to avoid blurs and 

effects of saturation regions. Due to the proposed fusion, the 

resultant details have sharp edges and textures. Consequently, 

the proposed method produces fine fused images without 

artifacts, and we show that the proposed method outperforms 

previous methods through simulations objectively and 

perceptually. We assume that the object alignment is already 

finished by previous methods in this paper, because the several 

alignment methods have been proposed, and show their 

efficacy [2, 18]. 

II. STRUCTURAL PATCH DECOMPOSITION FOR 

MEF 

      In this section, we detail the proposed structural patch 

decomposition (SPD) approach for MEF. We first describe 

abaseline version that works for static scenes, and then extend 

it to dynamic scenes by adding a structural consistency check, 

resulting in the robust SPD-MEF algorithm. 

A. Robust SPD-MEF  

    We extend the baseline SPD-MEF to account for dynamic 

scenes in the presence of camera and object motion. We 

assume that the input source sequence is aligned, for example 

by setting a tripod or some image registration algorithms [15]–

[17]. This assumption is mild because the camera motion is 

usually small and relatively uniform. In this paper, we 

implement image registration by first performing SIFT [17] 

matching and then computing an affine transformation matrix 

from matched points with an l21-norm loss. It works well on 

all test sequences that need to be aligned. The use of l21-norm 

loss is because it is robust to mismatched  points and can be 

efficiently solved using iteratively reweighted least squares. we 

also pick one exposure as the reference to determine the motion 

appeared in the fused image and reject inconsistent motions in 

the rest images w.r.t. it. Throughout the paper, we select the 

one with normal exposure if the source image sequence 

contains three input images. Otherwise, we choosethe one that 

has the least number of under- or over-exposed patches, as 

suggested in [19], [20]. Within the framework of the proposed 

SPD, it is very convenient to detect inconsistent motions across 

exposures by making use of the structure vector sk. To be 

specific, we compute the inner product between the reference 

signal structure sr and the signal structure sk of another 

exposure ρk lies in [−1, 1] with a larger value indicating higher 

consistency between sk and sr. Since sk is constructed by mean 

removal and strength. The corresponding binary map generated 

for each exposure (including the reference which is uniformly 

one) is referred to as the structural consistency map, as shown 

in Fig3. From the figure, we observe that the inconsistent 

motions across exposures are reliably identified with minimal 

false positive detection, and the structure vectors of over-

exposed areas in the reference image (e.g., the clouds in the left 

part of the4-th image) are consistent with the same regions in 

other  exposures, which verifies our claim of properly 

handling under- or over-exposed regions. 

 
Fig. 2. Making use of color contrast. ck is the average 

signal strength of the k-th inset patch computed from 

RGB channels separately. ck is the corresponding signal 

strength by treating RGB channels jointly. Source image 

sequence by courtesy of Tom Mertens [9]. (a) c1 = 0.1, c1 

= 0.2. (b) c2 = 0.3, c2 = 0.3. (c) c3 = 0.3, c3 = 7.5. (d) c4 = 

0.0, c4 = 0.0. (e) Gu12 [8]. (f) Shutao12 [13]. (g) SPD-

MEF. 

    Although we leave open the possibility of filling in the  

under- or over-exposed regions of the reference image with 

structures from other exposures, we add another constraint to 

check whether those structures are proper for fusion inorder 

to minimize ghosting artifacts by invoking IMF, whichis 

capable of mapping between intensity values of any two  

exposures. For example, we can easily create a latent image 

that contains the same motion as the 4-th image of Fig. 3(a) 

but has an exposure level like the 2-nd image of Fig. (a) by 

mapping the intensity values of the former to the latter using 

IMF. We first create K −1 latent images by mapping the 

intensity values of the reference image to the rest K −1 

exposures and compute the absolute mean intensity 

difference of co-located patches in the k-th exposure and its 

corresponding latent image. We again threshold the 

difference 

                                      (1) 

Moreover, we are able to adjust the mean intensity of the 

moving object in the reference image to adapt it to the 

neighborhood environment, which avoids abrupt intensity 

changes in a much cheaper way. 

III. CONCLUSION AND FUTURE SCOPE 

      In this paper, we proposed a novel structural patch 

decomposition (SPD) approach for MEF. Different from most 

pixel wise MEF methods, SPD-MEF works on color image 

patches directly by decomposing them into three conceptually 

independent components and by processing each component 

separately. As a result, SPD-MEF generates little noise in the 

weighing map and makes better use of color information 

during fusion. Furthermore, reliable deghosting performance 
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is achieved by using the direction information of the structure 

vector. Comprehensive experimental results demonstrated that  

SPD-MEF produces MEF images with sharp details, vivid 

color appearance and little ghosting artifacts while maintaining 

a manageable computational cost. The proposed SPD approach 

is essentially dynamic range independent. Therefore, it would 

be interesting to explore its potential use in HDR 

reconstruction to generate high quality HDR images with little 

ghosting artifacts. Moreover, the application of SPD is not 

limited to MEF. As a generic signal processing approach, SPD 

has been found to be useful in image quality assessment of 

contrast-changed and stereoscopic images. It is worth 

considering whether SPD offers any insights that can be 

transferred to other image processing applications. In addition, 

although objective quality models for MEF algorithms begin to 

emerge, the models for objectively comparing MEF algorithms 

for dynamic scenes are largely lacking. Therefore, it is 

demanding to switch the focus from developing MEF 

algorithms for dynamic scenes to developing such objective 

quality models in order to conduct a fair comparison. 
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