

WWW.IJITECH.ORG

ISSN 2321-8665

Volume.06, Issue.01,

January-June, 2018,

Pages:0117-0120

Copyright @ 2018 IJIT. All rights reserved.

Detecting and Removing Web Application Vulnerabilities with Static

Analysis and Data Mining
D. MAHESH

1
, SK. N. REHMATHUNNISA

2

1
PG Scholar, Dept of CSE, DJR Institute of Engineering & Technology, Andhrapradesh, India,

E-mail: dmahesh333@gmail.com.
2
Associate Professor, Dept of CSE, DJR Institute of Engineering & Technology, Andhrapradesh, India,

E-mail: shaikrehmathunnisa@gmail.com.

Abstract: An important part of that problem derives from

vulnerable source code, often written in unsafe languages like

PHP. Source code static analysis tools are a solution to find

vulnerabilities, but they tend to generate false positives, and

require considerable effort for programmers to manually fix the

code. We explore the use of a combination of methods to

discover vulnerabilities in source code with fewer false

positives. We combine taint analysis, which finds candidate

vulner abilities, with data mining, to predict the existence of

false positives. This approach brings together two approaches

that are apparently orthogonal: humans coding the knowledge

about vulnerabilities(for taint analysis), joined with the

seemingly orthogonal approach of automatically obtaining that

knowledge (with machine learning, for data mining). Given

this enhanced form of detection, we propose doing automatic

code correction by inserting fixes in the source code. Our

approach was implemented in the WAP tool, and an

experimental evaluation was performed with a large set of PHP

applications. Our tool found 388 vulnerabilities in1.4 million

lines of code. Its accuracy and precision were approximately

5% better than PhpMinerII's and 45% better than Pixy's.

Keywords: Automatic Protection, Data Mining, False

Positives, Input Validation Vulnerabilities, Software Security,

Source Code Static Analysis, Web Applications.

I. INTRODUCTION

 These applications appear in many forms, from small

home-made to large-scale commercial services (e.g., Google

Docs, Twitter, Facebook). However, web applications have

been plagued with security problems. For example, a recent

report indicates an increase of web attacks of around 33% in

2012 [1]. Arguably, a reason for the insecurity of web

applications is that many programmers lack appropriate

knowledge about secure coding, so they leave applications with

flaws. However, the mechanisms for web application security

fall in two extremes. This paper explores an approach for

automatically protecting web applications while keeping the

programmer in the loop. The approach consists in analyzing the

web application source code searching for input validation

vulner abilities, and inserting fixes in the same code to correct

these flaws. The programmer is kept in the loop by being

allowed to understand where the vulner abilities were found,

and how they were corrected. This approach contributes

directly to the security of web applications by removing

vulnerabilities, and indirectly by letting the programmers

learn from their mistakes. This last aspect is enabled by

inserting fixes that follow common security coding practices,

so programmers can learn these practices by seeing the vulner

abilities, and how they were removed. We explore the use of

a novel combination of methods to detect this type of

vulnerability: static analysis with data mining. Static analysis

is an effective mechanism to find vulner abilities in source

code, but tends to report many false positives (non-

vulnerabilities) due to its un decidability. This problem is

particularly difficult with languages such as PHP that are

weakly typed, and not formally specified.

 Therefore, we complement a form of static analysis, taint

analysis, with the use of data mining to predict the existence

of false positives. This solution combines two apparently

disjoint approaches: humans coding the knowledge about

vulner abilities (fortaint analysis), in combination with

automatically obtaining that knowledge (with supervised

machine learning supporting data mining). To predict the

existence of false positives, we introduce the novel idea of

assessing if the vulnerabilities detected are false positives

using data mining. To do this assessment, we measure

attributes of the code that we observed to be associated with

the presence of false positives, and use a combination of the

three top-ranking classifiers to flag every vulnerability as

false positive or not. We explore the use of several classifiers:

ID3, C4.5/J48, Random Forest, Random Tree, K-NN, Naive

Bayes, BayesNet, MLP, SVM ,and Logistic Regression.

Moreover, for every vulner ability classified as falsepositive,

we use an induction rule classifier to show which attributes

are associated with it. We explore the JRip, PART, Prism,

and Ridor induction rule classifiers for this goal .Classifiers

are automatically configured using machine learning based on

labeled vulner ability data.

II. EXISTING SYSTEM

 There is a large corpus of related work, so we just

summarize the main areas by discussing representative

mailto:dmahesh333@gmail.com
mailto:shaikrehmathunnisa@gmail.com

D. MAHESH, SK. N. REHMATHUNNISA

International Journal of Innovative Technologies

Volume.06, Issue No.01, January-June, 2018, Pages: 0117-0120

papers, while leaving many others unreferenced to

conserve space.

 Static analysis tools automate the auditing of code, either

source, binary, or intermediate.

 Taint analysis tools like CQUAL and Splint (both for C

code) use two qualifiers to annotate source code: the

untainted qualifier indicates either that a function or

parameter returns trustworthy data (e.g., a sanitization

function), or a parameter of a function requires trustworthy

data (e.g., mysql_query). The tainted qualifier means that a

function or a parameter returns non-trustworthy data (e.g.,

functions that read user input).

Disadvantages of Existing System:

 These other works did not aim to detect bugs and identify

their location, but to assess the quality of the software in

terms of the prevalence of defects and vulnerabilities.

 WAP does not use data mining to identify vulnerabilities,

but to predict whether the vulnerabilities found by taint

analysis are really vulner abilities or false positives.

 AMNESIA does static analysis to discover all SQL

queries, vulnerable or not; and in runtime it checks if the

call being made satisfies the format defined by the

programmer.

 WebSSARI also does static analysis, and inserts runtime

guards, but no details are available about what the guards

are, or how they are inserted.

III. PROPOSED SYSTEM

 This paper explores an approach for automatically

protecting web applications while keeping the programmer

in the loop as shown in Fig.1. The approach consists in

analyzing the web application source code searching for

input validation vulnerabilities, and inserting fixes in the

same code to correct these flaws. The programmer is kept

in the loop by being allowed to understand where the

vulnerabilities were found, and how they were corrected.

 This approach contributes directly to the security of web

applications by removing vulnerabilities, and indirectly by

letting the programmers learn from their mistakes. This

last aspect is enabled by inserting fixes that follow

common security coding practices, so programmers can

learn these practices by seeing the vulnerabilities, and how

they were removed.

 We explore the use of a novel combination of methods to

detect this type of vulnerability: static analysis with data

mining. Static analysis is an effective mechanism to find

vulnerabilities in source code, but tends to report many

false positives (non-vulnerabilities) due to its

undecidability

 To predict the existence of false positives, we introduce

the novel idea of assessing if the vulnerabilities detected

are false positives using data mining. To do this

assessment, we measure attributes of the code that we

observed to be associated with the presence of false

positives, and use a combination of the three top-ranking

classifiers to flag every vulnerability as false positive or

not.

Advantages of Proposed System:

 Ensuring that the code correction is done correctly

requires assessing that the vulnerabilities are removed,

and that the correct behavior of the application is not

modified by the fixes.

 We propose using program mutation and regression

testing to confirm, respectively, that the fixes function as

they are programmed to (blocking malicious inputs), and

that the application remains working as expected (with

benign inputs).

 The main contributions of the paper are: 1) an approach

for improving the security of web applications by

combining detection and automatic correction of

vulnerabilities in web applications; 2) a combination of

taint analysis and data mining techniques to identify

vulnerabilities with low false positives; 3) a tool that

implements that approach for web applications written in

PHP with several database management systems; and 4)

a study of the configuration of the data mining

component, and an experimental evaluation of the tool

with a considerable number of open source PHP

applications.

Fig.1.System Architecture.

IV. RELATED WORK

 Taint Analysis

 Predicting False Positives

 Code Correction

 Testing

A. Taint Analysis

 The taint analyzer is a static analysis tool that operates

over an AST created by a lexer and a parser, for PHP 5in our

case. In the beginning of the analysis, all symbols (variables,

functions)are untainted unless they are an entry point. The

tree walkers build a tainted symbol table (TST) in which

every cell is a program statement from which we want to

Detecting and Removing Web Application Vulnerabilities with Static Analysis and Data Mining

International Journal of Innovative Technologies

Volume.06, Issue No.01, January-June, 2018, Pages: 0117-0120

collect data. Each cell contains a subtree of the AST plus some

data. For instance, for statement $x = $b + $c; the TST cell

contains the subtree of the AST that represents the dependency

of $x on $b and $c. For each symbol, several data items are

stored, e.g., the symbol name, the line number of the statement,

and the taintedness.

B. Predicting False Positives

 The static analysis problem is known to be related to

Turing's halting problem, and therefore is undecidable for non-

trivial languages. In practice, this difficulty is solved by

making only a partial analysis of some language constructs,

leading static analysis tools to be unsound. In our approach,

this problem can appear, for example, with string manipulation

operations. For instance, it is unclear what to do to the state of

a tainted string that is processed by operations that return a

substring or concatenate it with another string. Both operations

can untainted the string, but we cannot decide with complete

certainty. We opted to let the string be tainted, which may lead

to false positives but not false negatives.

C. Code Correction

 Our approach involves doing code correction automatically

after the detection of the vulnerabilities is performed by the

taint analyzer and the data mining component. The taint

analyzer returns data about the vulnerability, including its

class(e.g., SQLI), and the vulnerable slice of code. The code

corrector uses these data to define the fix to insert, and the

place to insert it. A fix is a call to a function that sanitizes or

validates the data that reaches the sensitive sink. Sanitization

involves modifying the data to neutralize dangerous Meta

characters or metadata, if they are present. Validation involves

checking the data, and executing the sensitive sink or not

depending on this verification.

D. Testing

 Our fixes were designed to avoid modifying the (correct)

behavior of the applications. So far, we witnessed no cases in

which an application fixed by WAP started to function

incorrectly, or that the fixes themselves worked incorrectly.

However, to increase the confidence in this observation, we

propose using software testing techniques. Testing is probably

the most widely adopted approach for ensuring software

correctness. The idea is to apply a set of test cases (i.e., inputs)

to a program to determine for instance if the program in general

contains errors, or if modifications to the program introduced

errors. This verification is done by checking if these test cases

produce incorrect or unexpected behavior or outputs. We use

two software testing techniques for doing these two

verifications, respectively: 1) program mutation, and 2)

regression testing.

VI. CONCLUSION

 The approach and the tool search for vulnerabilities using a

combination of two techniques: static source code analysis, and

data mining. Data mining is used to identify false positives

using the top 3 machine learning classifiers, and to justify their

presence using an induction rule classifier. All classifiers were

selected after a thorough comparison of several alternatives. It

is important to note that this combination of detection

techniques cannot provide entirely correct results. The static

analysis problem is un-decidable, and resorting to data

mining cannot circumvent this un-decidability, but only

provide probabilistic results. The tool corrects the code by

inserting fixes, i.e., sanitization and validation functions.

Testing is used to verify if the fixes actually remove the

vulnerabilities and do not compromise the (correct) behavior

of the applications.

VII. RESULTS

Fig.2.

Fig.3.

Fig.4.

D. MAHESH, SK. N. REHMATHUNNISA

International Journal of Innovative Technologies

Volume.06, Issue No.01, January-June, 2018, Pages: 0117-0120

VIII. REFERENCES

[1] Symantec, Internet threat report. 2012 trends, vol. 18, Apr.

2013.

[2] W. Halfond, A. Orso, and P. Manolios, “WASP: protecting

web applicationsusing positive tainting and syntax aware

evaluation,” IEEETrans. Softw. Eng., vol. 34, no. 1, pp. 65–81,

2008.

[3]T.Pietraszek and C. V. Berghe, “Defending against injection

attacks through context-sensitive string evaluation,” in Proc.

8th Int. Conf. RecentAdvances in Intrusion Detection, 2005,

pp. 124–145.

[4] X. Wang, C. Pan, P. Liu, and S. Zhu, “SigFree: A

signature-free bufferoverflow attack blocker,” in Proc. 15th

USENIX Security Symp., Aug.2006, pp. 225–240.

[5] J. Antunes, N. F. Neves, M. Correia, P. Verissimo, and R.

Neves, “Vulnerabilityremoval with attack injection,” IEEE

Trans. Softw.Eng., vol.36, no. 3, pp. 357–370, 2010.

[6] R. Banabic and G. Candea, “Fast black-box testing of

system recoverycode,” in Proc. 7th ACM Eur. Conf. Computer

Systems, 2012, pp.281–294.

[7] Y.-W. Huang et al., “Web application security assessment

by fault injectionand behavior monitoring,” in Proc. 12th Int.

Conf. World WideWeb, 2003, pp. 148–159.

[8] Y.-W. Huang et al., “Securing web application code by

static analysisand runtime protection,” in Proc. 13th Int. Conf.

World Wide Web,2004, pp. 40–52.

[9] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias

analysis forstatic detection of web application vulnerabilities,”

inProc. 2006WorkshopProgramming Languages and Analysis

for Security, Jun. 2006,pp. 27–36.

[10] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner,

“Detecting formatstring vulnerabilities with type qualifiers,” in

Proc. 10th USENIX SecuritySymp., Aug. 2001, vol. 10, pp.

16–16.

[11] W. Landi, “Undecidability of static analysis,” ACM

Lett.Program.Lang. Syst., vol. 1, no. 4, pp. 323–337, 1992.

[12] N. L. de Poel, “Automated security review of PHP web

applicationswith static code analysis,” M.S. thesis, State Univ.

Groningen,Groningen, The Netherlands, May 2010.

[13] WAP tool website [Online]. Available: http://awap.

sourceforge.net/

[14] Imperva, Hacker intelligence initiative, monthly trend

report #8, Apr.2012.

[15] J. Williams and D. Wichers, OWASP Top 10 - 2013 rcl -

the ten mostcritical web application security risks, OWASP

Foundation, 2013,Tech. Rep.

[16] R. S. Sandhu, “Lattice-based access control models,”

IEEE Comput.,vol. 26, no. 11, pp. 9–19, 1993.

Author’s Profiles:

D. Mahesh, received hisB.Tech degree in

computer science and engineering and

pursuing M.Tech degree in computer

science and engineering from, DJR Institute

of Engineering & Technology.

Sk.N.RehmathunnisaM.Tech received her

M.Tech degree and B.Tech degree in

computer science and engineering . She is

currently working as an Assoc Professor in,

DJR Institute of Engineering& Technology.

